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ANALYTICAL METHOD FOR STEADY STATE HEAT TRANSFER IN 

TWO-DIMENSIONAL POROUS MEDIA 

by Robert Siege1 and  M a r v i n  E. Goldstein 

Lewis Research Center  

SUMMARY 

A general technique has been devised for obtaining exact solutions for the heat 
t ransfer  behavior of a two-dimensional porous cooled medium. Fluid flows through the 
porous medium from a reservoir  at constant pressure and temperature to a second r e s -  
ervoir at a lower pressure.  
region that are each at constant pressure a r e  boundaries of constant velocity potential. 
This fact is used to map the porous region into a s t r ip  bounded by parallel potential lines 
in a complex potential plane. The energy equation, derived by assuming the local ma- 
t r i x  and fluid temperatures are equal, is transformed into a separable equation when its 
independent variables a r e  changed to the coordinates of the potential plane. This allows 
the general solution for the temperature distribution to be found in the potential plane. 
The solution is then mapped into the physical plane to yield the heat transfer character- 
ist ics of the porous region. An example problem of a porous wall having a s tep in 
thickness and a specified surface temperature or heat flux is worked out in detail. 

For the type of flow involved, the surfaces of the porous 

INTRODUCTION 

There are a number of flow and heat transfer applications that involve porous media. 
These include drainage of water in soil, the use of packed bed heaters,  drying of mate- 
rials, and transpiration cooling. 
cerned, a coolant is made to flow through the porous material  in order  to protect this 
material  when it is exposed to a high temperature environment. Possible applications 
for transpiration cooled materials a r e  in  rocket nozzles, gas turbine blades, and por- 
tions of vehicle surfaces in high speed flight. 

materials carr ied out around 1950 have been given in the heat conduction text by 

In the last of these, with which this report  is con- 

Some of the ear ly  analyses of the heat transfer characterist ics of porous cooled 



Schneider (ref. 1). Some of the more recent papers are reference 2, which contains a 
long list of references, and reference 3 .  As can be seen from these references, the 
analyses of the heat flow within a porous cooled material  have all been for one- 
dimensional geometries such as for a plane s lab o r  radial flow through a tube wall. The 
objective of the present report  is to present a method for obtaining analytical solutions 
in two-dimensional geometries. 

It is evident that the configurations used for such devices as porous cooled turbine 
blades or rocket nozzles will deviate from a one-dimensional geometry. In some in- 
stances it may be possible to make a locally one-dimensional assumption in analyzing 
these geometries. However, the limits for making such an assumption can only be eval- 
uated by examining solutions in more than one dimension. When the c ross  section of the 
material  deviates considerably from a one-dimensional shape, the fluid flow in the por- 
ous matrix can follow complex paths, and two- o r  three-dimensional solutions a r e  r e -  
quired. General two-dimensional solutions wil l  be obtained here for either an arbi t rary 
temperature variation or an arbi t rary heat flux variation on the surface of the porous 
cooled medium. The relations that a r e  found between surface temperature and heat flux 
would enable the solution for the heat transfer in the porous material  to be coupled to the 
solutions to an external heat transfer problem such as a boundary layer flow. 

a.porous material  the fluid and matrix material  a r e  in good thermal communication. 
a result  the local fluid temperature is the same as the local temperature of the matrix 
material. A single energy equation can then be written which is composed of two terms,  
one of which represents the energy carr ied by the flowing coolant and the other being the 
energy flow due to heat conduction in the matrix material. 

The velocity that appears in the energy equation is a function of position in the 
medium, and for the slow viscous flow encountered in the pores of many porous media, 
the velocity is proportional to the local pressure gradient (Darcy's law). By suitably 
defining a dimensionless velocity and pressure,  the dimensionless pressure is fixed at 
zero on the coolant reservoir side of the porous medium, and at unity on the high tem- 
perature side of the medium. 
gradient of the dimensionless pressure,  and since in addition, the velocity satisfies the 
continuity equation, the dimensionless pressure can be regarded as a velocity potential. 
Thus the region occupied by the porous material  can be mapped into the region of a com- 
plex potential plane lying between two parallel potential lines at zero and unity which 
correspond to each of the constant pressure surfaces. 

pendent variables become the coordinates of the potential plane. In this plane the trans- 
formed energy equation is separable and the geometry is in the simple form of a unit 
str ip.  These facts make it possible to obtain a general solution to the energy equation. 
After the general solution has been obtained in the potential plane, conformal mapping is 

2 

The present analysis will  utilize the fact  that in many instances within the pores of 
As 

Since the dimensionless velocity is proportional to the 

The method given here is based on transforming the energy equation so  that its inde- 

. ... . . .. -.._ .. - . .._. .-... ,,, . .. 
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used to relate it to the coordinates of the physical plane. 
The method described can be carr ied out for a variety of geometries and boundary 

conditions. The general solution is obtained here as a typical case for a two- 
dimensional porous region that is long in one of the coordinate directions and has a vari- 
able thickness in the other direction. One surface of the medium can have either an 
arbi t rary specified temperature o r  heat flux. 

To illustrate the application of the general solution, the specific situation of a step 
porous wall (i. e . ,  a wall  that changes in a step function fashion from one constant thick- 
ness to another) is considered. The solution is carried out to yield surface heat fluxes 
o r  temperatures corresponding to cases where one surface of the medium is either 
maintained at a specified uniform temperature, has a step function temperature varia- 
tion, or has a specified uniform heat flux. 

SYMBOLS 

A 

c 1 7  c27 c 3 7  cd’ 

cP 
E 
E 
F 

G 

H 

hr 
A -  

i, j 

km 

LS 

zS 

M 

N 

n 

P 

q 

A 

ratio of thick to thin dimensions of step porous wall 

integration constants 

specific heat of fluid 

transform defined by eq. (44) 

function defined in eq. (65b) 

function in specified temperature distribution eq. (sa) 
function in specified heat flux distribution eq. (6b) 

transform defined by eq. (39) 

reference length in porous material  

unit vectors in X- and Y-directions 

thermal conductivity of porous region 

dimensionless coordinate along boundary S, ZS/hr 

coordinate along boundary s such that = 0 at x = 0 

heat flux parameter, (q2 - ql)/ql 

temperature parameter, (t2 - tl)/(tl - t,) 
outward normal vector 

pres sure  

heat flux 

S 
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-c 

U 

v 
V 

LL 

W 

x, y 

x, Y 

Z 

P'  
A 

6 

r 
rl 

e 
K 

x 

bounding surfaces  of porous region in dimensionless coordinate system 

bounding surfaces of porous region 

boundary surface of arbi t rary volume CL 

dimensionless temperature defined in eqs .  (10) and (11) 

temperature 

dimensionless velocity 

velocity 

dimensionless velocity in Y direction 

velocity in y direction 

arbi t rary volume 

complex potential W = + + iq 

hr 5 
K Po - P, 

dimensionless coordinates, - X and - Y 
hr hr 

rectangular coordinates 

dimensionless physical plane, X + i Y  

separation constant in solution for 8 

quantity defined in eq. (11) 

Dirac delta function 

intermediate mapping plane, 5 = 5 + iq 

imaginary part  of 5 

dependent variable defined by eq. (29) 

permeability of porous material 

parameter, - 

fluid viscosity 

r e a l  par t  of 5 

PCP K(Po - P,) 

2km P 

fluid density 

function of cp in solution for 8 

potential, imaginary part  of W, (Po - p)/(po - ps) 

dummy variables of integration 

function of + in solution for 8 



real part  of W . 

v" dimensionless gradient, eq. (15) 

Superscript: 

at location of step in  plate thickness 

Subscripts : 

o 

s at the boundary S 

03 coolant reservoir 

1 , 2  values at large negative and large positive X (or x) on surface S (or S )  

at the boundary so or  So 

DERIVATION OF BAS IC EQUATIONS 

Let t~ be any volume within a porous medium with effective thermal conductivity 
km (based on the entire c ross  sectional a rea  of the porous material) and permeability K 

such that u is large with respect to the pore size and let d denote the surface of LC. 

Suppose that there is a fluid with constant density p ,  constant heat capacity C and 
constant viscosity p which is flowing through @. Assume that the thermal conductivity 
of the fluid is very small  compared with km and that the pore size is s o  small  that the 
fluid obeys Darcy's law. Let u" denote the local Darcy velocity of the fluid (this is the 
velocity obtained by dividing the volume flow by the entire cross  section of the porous 
material  rather than the open area) .  
the matrix is sufficiently good, the local fluid temperature will  be approximately equal 
to  the matrix temperature in the immediate vicinity. We denote this common tempera- 
ture by t. Finally, suppose that a steady state situation exists within G. Then an 
overall energy balance applied to LC shows that 

P 

If the thermal communication between the fluid and 

4 (pCp&- km Vt) d?= 0 

or applying the Divergence theorem 

V - (tG) - km V 

If the changes in t and a r e  very small  in distances on the order of the pore size, 
we can conclude from this (since i~ is arbi t rary)  that 
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2 km V t - pC V .  (Zt) = O  
P 

Now the equation of continuity for the fluid is 

v -  i i = o  

This shows that equation (1) can be written as 

Darcy's law for the fluid velocity is 

- K  u = - -  v p  
P 

(4) 

where p is the local pressure of the fluid within the medium. Equations (2) to  (4) are 
the three-dimensional generalizations of the classical  one-dimensional porous cooling 
equations (see ref. 1). 

GENERAL ANALYSIS OF TWO-DIMENSIONAL POROUS COOLED WALLS 

The steps in the analysis involve (a) establishing the boundary conditions associated 
with the porous wall, (b) formulating these boundary conditions and the associated erlergy 
equation in dimensionless form, and (c) transforming the entire boundary-value problem 
into the potential plane and finding a general solution. 
any arbi t rary temperature o r  heat flux distribution along one surface of the porous mate- 
rial. Conformal mapping is used to relate the potential plane solution to  the physical 
plane. 

The general solution applies to 

Boundary Condit ions o n  Porous Region 

Now consider the two-dimensional porous wall shown in figure 1. The lower surface 
of the wall whose unit outward-drawn normal is go is denoted by so, and the upper sur -  
face of the wall whose unit outward-drawn normal is ; is denoted by s. We suppose 
that no changes occur in the direction perpendicular to  the x, y-plane. 
there is a reservoir  which is maintained at constant pressure and temperature po and 
t, , respectively. The pressure in the fluid above the wall is constant and equal to ps. 
We suppose that po > p,. 

S 
Below the wall 

Then the fluid flows from the reservoir  through the porous 

6 



" S  

t, 

Figure 1. - Two-dimensional porous cooled wall. 

wall and out through the top surface. Since po and ps are both constant, the fluid ve- 
locity at the wall surfaces (so and s )  will be in a direction perpendicular to these sur -  
faces.  The conditions on the upper surface of the wall will be chosen so that heat flows 
by conduction through the wall from the upper surface into the reservoir  below at t, . 
We assume that the assumptions of the previous section apply within the wall and there- 
fore that the flows of heat and mass  within the wall are governed by equations (2) to (4). 

Now as the fluid in the reservoir  approaches the wall, its temperature will rise 
from the reservoir  temperature t, to  the wall surface temperature to, which is an 
unknown variable along so. Since the thermal conductivity of the fluid is assumed to be 
much less than the thermal conductivity of the wall, for  reasonable magnitudes of the' 
fluid flow velocity the thickness of the fluid layer over which this temperature r i s e  takes 
place is very small  compared with the wal l  thickness. We can therefore assume that the 
fluid layer is locally one dimensional. 
is no flow along this thermal layer.  
layer shows that 

Since the velocity is perpendicular to so, there 
Hence, applying an energy balance to the thermal 

kmiio * V t  = pCp(to - t,)no u 
for  (X,Y)ES0 (5 ) 

P = Po 

We shall  consider two different types of boundary conditions for the upper surface 
s. First, we shall  suppose that its surface temperature is specified so that it var ies  
along the surface f rom a temperature tl at 1 ,  = -00 to a temperature t2 at 1, = +a. 

The 1, is the distance measured along the upper surface from the point where it inter- 

7 



sec ts  the y-axis. Thus in this case the boundary conditions on the upper surface of the 
wall are 

P = Ps J 
where F is a given function which is equal to  ze ro  at - = - m  and equal t o  1 at t) 

= +,, and hr is a reference length. 

The second boundary condition which we shall  consider is where the heat flux into 
the wall is specified along the upper surface so that it var ies  from a value of q1 at 
I = -, to a value of q2 at I s  = +,. Under these conditions the boundary condition 
on the upper surface becomes 

Q 
S 

where G is a given function which is equal to zero  a t  Zs/hr = -00 and equal to 1 at 
Zs/hr = +, . Equations (2) t o  (4) together with the boundary conditions (5) and (sa) o? 
alternatively together with the boundary conditions (5) and (6b) completely determine the 
solution to the heat t ransfer  problems within the porous wall. 

Dimensionless Form of Energy Equation and Boundary Conditions 

It is now convenient to  introduce the following dimensionless quantities : 

N =  t2 - tl 
t - t, 1 

92 - 91 

91 
M =  

8 



X = x/hr 

y = Y/hr 

Po - P 

Po - ps  
c p =  

- P  hr u = -  
K (Po - Ps) 

t - t, 
T =- 

A 

where 

7 

[ (tl - t, ) i f  boundary condition (sa) applies 

* 
i f  boundary condition (6b) applies 

Upon substituting these definitions into equations (2) to (4) and boundary conditions 
(5), (sa), and (6b), we obtain 

J N -  o - u = o  

n A -  - VT = 2xiiO - ET} 
0 

for (X,Y)cS0 
cp = o  

T = 1 + 
for (X,Y)eS 

c p = l  

9 
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or 

1 

for (X,Y)ES 

N 

?is - VT = 1 + 

Cp = 1  

where 

- V = i -  A a +p 
ax ay 

and the porous wall  in dimensionless coordinates is shown in figure 2. 

The second equation (12) can be used to eliminate v' in the other two equations (12). 
Thus 

and 

(17) -2 v q = o  

10 



Since cp is constant on So and S, it is clear that 

N 

for (X,Y)cS0 

and 

N 

- vcp for (X,Y)ES ns -- * 

I % I  
Using these resul ts  together with the second equation (12) in the boundary conditions (13) 
and (14b), we obtain 

and 

q = l  J 
Transformat ion of Boundary Value Problem In to  Potential Plane 

Since equation (17) shows that q satisfies Laplace's equation, there must exist a 
harmonic function +b and an analytic function W of the complex variable 

such that 

W = + b + i q  

Physically the change in  +b between any two points is proportional to  the volume flow of 
liquid crossing any curve joining those two points. Hence +b must vary between - m  

and +a as X varies  between -m and +a. Since 

9mw = 0 for ZES, 

11 



and 
I 

Anw = 1 for ZES 

The mapping 

z - w  

transforms the physical plane (Z-plane) shown in figure 2 into the infinite s t r ip  shown in 
figure 3 in the W-plane. The boundaries So and S in the physical plane are trans- 
formed into the lines cp = 0 and cp = 1, respectively, in the W-plane. The mapping 
Z - W can be found by using conformal mapping once the shape of the porous wall in the 

9 

Cp'l I 

Figure 3. -Complex potential plane (W-plane). 

physical plane is specified. 
the flow. 

The boundary value problem for the temperature in the physical plane can be solved 
i f  we use the Boussinesq transform (ref. 4) to transform it into a boundary value prob- 
lem in the W-plane. Thus, the independent variables X and Y in equation (16) and its 
boundary conditions will be changed to the variables cp and I), and the resulting bound- 
a r y  value problems will be solved in the infinite s t r ip  in the W-plane shown in figure 3 .  
Once this solution, which gives T as a function of cp and q has been found, the map- 
ping W - Z (which is completely determined once the geometry of the wall  in the physi- 
cal  plane is specified) can be inverted to give Z as a function of cp and *. Thus T 
will be known parametrically (in te rms  of the parameters cp and 1c/) as a function of X 
and Y. This will complete the solution to the problem. 

This gives the solution to the boundary value problem for 
(An example for a specific wall geometry will be worked out subsequently. ) 

12 



---- .. . 

To transform the energy equation (16) and boundary conditions into the potential 
plane, the following relations are used (ref. 5): 

and 

2 

dZ 

Notice that 

Hence, upon taking real and imaginary parts,  we find 

This shows that 

Ziiially, notice that since p is constant on S, the distance Ls along S is a function of 
+ only. 
flow problem, is known. ) Thus 

(This functional relation is known once the mapping W - Z, which solves the 

Now, using equations (22) to (25) in equation (16) and the boundary conditions (18), 
(14a), and (19) yields 

aT 2 x - = o  & + - -  a2T 

13 



or  

or  

_.- aT 2hT = O  for cp = 0 
acp 

T = 1 -F NF(Ls(q)) for cp = 1 

3 = lgl [l + MG(Ls(+))] 
acp dW 

for cp = 1 

Equation (26) can be simplified by introducing the new dependent variable 0 defined 

In te rms  of this new variable equations (26) to (28b) become 

a2e a2e  h2e = - + - -  

at c p = O  ae 
acp 
- = he 

6 = 1 + NF(Ls(IC/)) a t  cp=1 

Equation (30) together with the boundary conditions (31) and (32a) (or alternatively 
and (32b)) constitute a boundary value problem for 8 in the unit s t r ip  in the W-plane 

(shown in fig. 3) which completely determines 0 (and therefore T)  as a function of ,p 
and +. Notice that the particular relation between Z and W (which depends only upon 
the geometry of the porous wall in the physical plane) enters only through the boundary 

must be known as functions condition (32a) (or alternatively (32b)) since Ls and 

of sl/ in order to completely determine these boundary conditions. It is possible to 
solve these boundary value problems for arbi t rary Ls and 

and G), and so the particular geometry and boundary conditions can be substituted into 
the general formulas once this general solution has been obtained. 

151 
(as well as arbi t rary F IgI 
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General Solut ion of Boundary Value Problems in Potential Plane 

The boundary value problems posed by equation (30) and the boundary conditions 
(31) and (32a) (or alternatively the boundary conditions (31) and (32b)) can easily be 
solved by the method of separation of variables. 
tion (30) of the form 

To this end we seek a solution to equa- 

Upon substituting this into equation (30), we find 

*" a" 2 - + - = A  
* a  

This implies that there exists a constant p such that 

and 

Hence, 
I ,- 

where C1 through C4 a r e  arbi t rary constants of integration. 

this boundary condition will be automatically satisfied i f  
Upon substituting equations (33) to (35) into the boundary condition (31), we find that 

c1 d s  - c2m = X ( C I +  C2) 

or 

c - c  4 x 2  + p2  - h 

2 -  l i 2  2 x + p  + A  

15  



Using this in equation (34) gives 

Hence, the solution to both boundary value problems must be of the form 

where the function C of p can be determined s o  that either the boundary condition (32a) 
or the boundary condition (32b) is satisfied. 

the boundary condition (32a) applies. 
Solution to boundary value - _ ~ _  problem for - specified . temperature. . _  - - First suppose that 

Put 

L 

Then equation (36) becomes 

Substituting this result  into the boundary condition (32a) yields 

1 + NF(Ls(+)) = -  Jl" E(p)eipq dp 
271 

Upon inverting this Fourier transform, we find 

16 



The first definite integral is equal to 

where 6 is the Dirac delta function. Hence 

3 P )  = 2716(P) + N H ( P )  

where 

(38) 

(3 9) 

Substituting equation (38) into equation (37) yields 

Thus equation (40) with H defined in t e rms  of the dimensionless temperature dis- 

In this case it is also of interest  to have an expression for the conduction heat flux 
tribution F by equation (39) is the solution to  the boundary value problem. 

qs crossing into the surface S, that is, 

qs = k  6 V t  for (X,Y)ES m s  

Therefore for (X, Y)ES, by use of equations (24) and (23), 

dW 
dZ 

Hence, by use  of the transformation (29) and the fact that cp = 1 on the boundary S we 
find 

17 



Upon substituting equations (32a) and (40) into this expression, we obtain 
f 

+ELm 27T 

h 
- 

h 

cosh (m) 
sinh (m) 

+ 
- 

+ 

sinh (m) - - - ---]dl 

cosh( dx2,p2) 
L 

Solution to boundary value problem for specified heat flux. - Now suppose that the 
boundary condition (32b) applies. Put 

+ p2) sinh (m) + 2h cosh (m)] 
L 

Then equation (36) becomes 

ipIc/ dp 

(43 ) 

e =- 
271 

(2h2 + p2) sinh 

Substituting this result  into the boundary condition (32b) yields 

Upon inverting this Fourier transform, we obtain 

= l- (44) 

Thus equation (43) with E" defined in t e rms  of the dimensionless heat flux distribution G 
and the reciprocal surface velocity by equation (44) is the solution to this 

18 



boundary value problem. 
(on S) is given by evaluating equations (29) and (43) at cp = 1 to obtain 

In particular the upper surface temperature distribution ts 

3 

4 5 

h sinh()/ha+) + c o s h ( m )  iP+ dp (45) 

+ p 2 ) s i n h ( m )  + 2 h m  

, r p =  1 

2 

r p =  0 Q ,' 1- 

SOLUTION FOR A STEP POROUS WALL 

The general solution has now been obtained for either a specified a rb i t ra ry  tempera- 
ture  or  heat flux at one surface of the porous material. 
the solution, resul ts  will be obtained for  the example of a s tep geometry as shown in fig-' 
u re  4(a). 
dimension, s o  that all lengths are in units of this dimension. 

To illustrate the application of 

The thickness of the thin portion of the wall has been chosen as the reference 

(a) Dimensionless physical plane, Z = X t iY 

19 



Conformal Mapping Relat ions Between Z and W Planes 

appears along with the functional relation 
Q=1 

In the solutions the quantity 

Ls(q) relating positions along the surface S to positions along the boundary 
the potential plane. These quantities can be found from the function Z - W, which maps 
the region shown in figure 4(a) into the region shown in figure 4(b). This function can be 
obtained in t e rms  of an intermediate variable < by utilizing the mapping given in refer- 
ence 6. The < plane is shown in figure 5.  The origin in the physical plane corresponds 

= 1 in  

-. 3,,4 5 

E =  1 & = A  

Figure 5. - Mapping of step porous wall into intermediate -plane, 
5 = + ig. 

to W = 0 and 5 = co. The mapping is given by 

Z = -  [ Alog  ( c  - + 1) - log(r’)] 
rl  5 - 1  5 - A  

and 

To obtain dW/dZ we use the relation 

dW - dW dc 
dZ d< dZ 

20 



The t e rm dZ/dc is found from equation (46) to be 

dZ - 2A 

de 

A2 - 1 - -- 
rr (c2 - 1)(c2 - A2) 

Upon solving equation (47) for  W, we find 

1 c 2  - A2 W = - l n  

Hence, 

A2 - 1 dW - 2c 

d5 ' (C2 - A ) (< - 1)  2 2  

s o  that 

At cp = 1, erw = e'*ei' = -e'*. Therefore, 

To obtain the relation between Ls and + along the boundary cp = 1, it is conven- 
ient to use < as an intermediate variable. The mapping defined by equation (46) trans- 
forms the porous region into the upper right quarter <-plane as shown in figure 5 .  The 
boundary cp = 1 maps onto the 5-axis between 5 = 1 and ( = A. The relation between 
Ls and ( is found by letting 5 = 5 + iq in equation (46). 
gives an expression for X as a function of ( and q.  Upon setting q = 0 in this ex- 
pression, we obtain an equation for  Ls as a function of (. 

Then taking the real par t  

The result  is 

I 
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The relation between .$ and I) along Ls is found from equation (47) by letting 71 = 0 
and cp = 1 to obtain 

vs = 

Thus equations (51) and (52) a r e  parametric equations that re la te  Ls to I,L. 

acp 
ay 
- 

cp=1 

Exit Veloci ty From Porous Plate 

It follows from equations (12) and (15) that for this example the velocity of the fluid 
leaving the porous wall  is 

Since the fact that cp is constant along the upper boundary implies that acp/aX = 0, 

It therefore follows from equation (50) that 

Solu t ion  f o r  a Step in Wal l  Temperature 

(53) 

In order to demonstrate how equation (42) can be applied, specific resul ts  will now 
be obtained for the example of a step function wall temperature variation along the 
boundary S. This solution also yields for zero s tep height the case of uniform wall  
temperature. In particular, let ts change from tl  to t2 at an arbi t rary location Lg 
so that the boundary condition (14a) becomes 

22 



T = 1 + NF(Ls - Lk) (55) 

where F is the unit s tep function defined by 

F(X) = 1 x > o  { F(X) = 0 x < o  
The correspondence between Ls and +b and LA and +b' is obtained from equations (51) 
and (52). However, because of the special properties of the s tep function it is not neces- 
s a r y  to relate Ls to  +b in order to evaluate I€@). In fact, equation (39) becomes in 
this case 

or  by letting X = Q - so' 

The evaluation of this integral is given in reference 7 as 

where the notation P . V .  indicates that the Cauchy principal value of the integral will 
be taken when integrating l/i/3. 

This expression for H(p) can now be substituted into equation (42). 
the first te rm of equation (56) into the integral which appears in equation (42), we find 
that 

Upon substituting 

N 
2 

cosh()/X2 + p2) + d G  sin.( )/A2 + p2)  dp = - A  

s i n h ( m ) +  dX2 + p2 cosh(dX2 + pa) 1 (57) 

03 

e 
277 
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integral yields the expression 

- 

Substituting the remaining te rm of equation (56) into this 

(58) 

N 
28 

'p(+-$') and - - 1 eiP(Ic;-Ic;') A s  p goes to 100 and -00 the integrand approaches - e 7 

i i 
respectively so  that the integral must be interpreted as the Fourier transform of a dis- 
tribution. For this reason this expression is not suitable for numerical evaluation. 
However, in order to obtain an alternative expression for this integral which is suitable 
for  this purpose, we need only add and subtract the t e rm 

where E(p) is the sign function which is defined by 

It is found from a table of Fourier transforms of distributions that 

Hence the integral (58) can be written as 

--+-P.V. N 2  N f m e  { fl [ X c o s h m  . m s i n h ) l h 2 + P 2  1- E @ b  

A sinh- + cosh- 
27r (9- *') 28 

-03 
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Upon changing the variable of integration from P to -/3 in the first integral, we 
find that the imaginary par ts  as well as the singularity at the origin cancel out, and we 
obtain 

or  

m 

(A - P)) /h2 + P2 cosh)/J2 + P 2 2 2  + (h + P - hP)sinh 

h sinh)/h2 + P2 + c o s h d m  

N 

The integral in this expression is absolutely convergent, and hence, can easily be eval- 
uated numerically. 
equation (42) yields the following expression for the heat flux entering the boundary S: 

The resul ts  contained in relations (57), (59), and (50) show that 

00 

+ (A2 + P2 - XP)sinh 

h s i n h d G  + d G  cosh d h 2  + p2 
A 

2 5  



Solution for Uniform Heat Flux  

In order to illustrate how equation (45) is applied, consider the case  where a uniform 
heat flux is imposed along the surface S. The function G in equation (6b) is zero in this 
instance, and equation (50) gives an expression for dW/dZ . Hence in this case the I @=I 

- I  - 
function E" in equation (44) is given by 

As * - m the integrand goes to e -ip* and as + - -00 the integrand goes to 
e-iB*/A, so that this integral exists only as the Fourier transform of a distribution and 
not as an ordinary integral. In order to separate out the singular parts of this integral, 
notice that equation (61) can be written as 

where the first two integrals a r e  absolutely convergent and the last two integrals can be 
evaluated from a table of Fourier transforms to give 

-1 - 1 27r6(P) + (1 - L)[n6(8) + 

A A i P  

Thus the following expression for is obtained 
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This is now inserted into equation (45). We shall  consider the integrals resulting 
from the various te rms  of equation (62) individually. 
t e rm of equation (62) is 

The integral resulting from the first 

I- - 

= ($ + +) X sinh X + X cosh X - -- A + l  
2 2 4X 2 X  sinh X +  2 X  cosh X 

The integral resulting from the second te rm of equation (62) is 

This latter integral is absolutely convergent. Now consider the integrals resulting from 
inserting the last two t e rms  of equation (62) into equation (45). These integrals a r e  also 
found to  be absolutely convergent. The exponential t e rms  in the integrals can therefore 
be expressed in trigonometric form. After collecting rea l  and imaginary parts, it is 
found that the imaginary part of the integrand is an odd function of p so that its integral 
from /3 = --oo to -oo is zero.  The integral of the remaining rea l  part can be expressed as 
an integral from p = 0 to  -oo and is then combined with equations (63) and (64) to yield the 
following expression for the surface temperature : 

+ E(p, +) [ cosh- + X sinh X + @ ]dp (65a) 
n 
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where 

DISCUSSION 

A general analytical method has been presented for determining the heat t ransfer  
characterist ics of two-dimensional porous cooled media. This method is based on trans- 
forming the energy equation so that its independent variables a r e  the coordinates in  the 
potential plane for the fluid flow. The energy equation is separable in these coordinates, 
and hence a general solution can be obtained. A feature that aids in the solution is that 
the boundaries of the porous material  are at constant pressure and as a consequence they 
map into parallel constant velocity potential lines in the complex potential plane. 
provides a convenient region in which to solve the energy equation. 
potential plane is then related to the physical plane by conformal mapping between the two 
regions. 

The following discussion concerns the application of the solution to  the example of a 
porous wall with a s tep change in  cross  section. No attempt is made to  conduct a para- 
metric study to demonstrate the effect of the governing dimensionless parameters  since 
this would only be of practical value if a particular engineering application were in mind. 

dimensionless heat flux into the boundary S of the porous material  parametrically as a 
function of position when the temperature distribution is a step function along that sur -  
face. The result  contains the parameters X, N, +', and A. The parameter A is the 
ratio of the thicknesses of the two regions of the porous wall as shown in figure 4(a). 
only resul ts  which will be presented a r e  for a value of A equal to 2. Hence, the geom- 
e t ry  will always be as shown in figure 6(a). The heat flux is first computed as a function 
of I) from equation (60). It is then expressed as a function of the coordinate Ls along 
the surface by use of the correspondence between Ls and I) given by equations (51) 
and (52). 

The dimensionless velocity leaving the upper surface is given by equation (54) and is 
shown in figure 6(b) for the porous plate with a s tep ratio A of 2. At the l imits of large 
negative Ls and large positive Ls the velocity V, goes, respectively, to  1 and 1/2, as 

This 
The solution in the 

Consider now the solution given by equations (51), (52), and (60). They give the 

The 



(a) Geometry of porous medium. 

(b) Dimensionless exit velocity from upper surface of medium. 

Ls = Zs/hr 

(c )  Dimensionless heat f lux  at upper surface. 

Figure 6. -Heat t ransfer to porous medium with upper 
surface at constant temperature, A = 2, N = 0. 

would be expected by examining the one-dimensional solution given in reference 1. The 
extent of the two-dimensional region required for the velocity to change between the two 
limiting values is shown by the figure. 

If the parameter N = (t2 - tl)/(tl - t,) is set equal to zero, then t2 = tl  and the 
surface S is at uniform temperature. With N = 0 the solution in equation (60) becomes 

2x qshr - _ -  1 (e"+ + A 

s o  it follows from equation (54) that 
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Thus for a given porous matrix when the surface temperature is uniform, the dimension- 
less  heat flux into the boundary is directly proportional to the fluid exit velocity. The 
dimensionless heat flux is shown in figure 6(c). This curve is the same as the curve in 
figure 6(b). 

The resul ts  of the calculations for N = 1 and h = 1 a r e  shown in figure 7. In this 
case the surface temperature has the distribution shown in figure 7(b). The heat flux is 
computed for three different positions of the step corresponding to LA = -1, 0, +l. The 
values of Q' which a r e  the values of Q corresponding to these values of Ls a r e  found 
from equations (51) and (52), and then used in the solution equation (60). For large Ls 
the dimensionless heat flux is found to be the same as for large negative Ls, as shown 

(a) Geometryof porous medium. 

_ _  __  ~~ ... . 0 '  
(b) Temperature distributions along upper surface. 

(c) Dimensionless heat f lux at upper surface cor respnd-  

Figure 7. - Heat transfer to surface for various locations 

ding to temperature distributions i n  part (b). 

of step i n  surface temperature, A = 2, A = 1, N = 1. 
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by figure 7(c). 
a ture  drop and half the exit velocity in the thick region of the wall  as compared with the 
thin region. In the general case these two limiting values of qs a r e  not equal. 
vicinity of the temperature jump qs changes discontinuously from a large negative value 
to a large positive value. This is a local heat conduction effect wherein the heat which is 
conducted into the porous wall  at the high temperature side of the s tep flows into the low 
temperature region, where it is then extracted from the wall  to maintain the surface tem- 
perature discontinuity . 

This is the result  of the compensating effects of having twice the temper- 

In the 

PCP K(Po - Ps> 

2km P 
Figure 8 shows the effect of varying the parameter h =- while the 

(a) Geometryof porous medium. 

q - 8  
-* -- 

0 
(b) Temperature distribution along upper surface, 

(c) Dimensionless heat f lux at upper surface, 

Figure 8. - Effect of A on heat transfer to surface of 
step porous medium with step in surface temperature, 
A -  2, N =  1. 
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temperature distribution on the wall surface remains fixed as given in figure 8(b). The 
larger values of h a r e  associated for example with larger pressure differences po - ps 
and hence with larger flows. Thus to maintain a fixed surface temperature, the heat flux 
into the plate can be increased when the flow is increased to correspond to a larger value 
of A. 

Now consider the solution given by equations (51), (52), and (65) for the case of uni- 
form heat input at the surface S. There a r e  only two parameters involved, A and A. 
Numerical results have been obtained for A = 2, and they are shown in figure 9. The 
exit velocity Vs is the same as in  figure 6 and is repeated here for convenience in in- 

(a) Geometry of porous medium. 

(b) Dimensionless exit velocity from upper surface of medium. 

0 I 1 I 
-2 -1 0 1 2 3 

L,=  Zs/hr 

(cJ Temperature of upper surface. 

Figure 9. - Effect of h on surface temperature for im-  

.lL I 

posed uni form heat flux, A = 2. 
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terpreting the results.  Since X increases when the flow through the wall increases,  the 
temperature difference ts - t, between the surface and the reservoir  decreases as X 

is increased for a fixed qs. Note that qs has been combined into the dimensionless 
ordinate of figure 9(c) s o  that each curve can be used for  any value of qs. As would be 
expected, the regions of high surface temperature are associated with the regions of low 
exit velocity. 

The preceding resul ts  serve to  illustrate the type of heat transfer behavior to be ex- 
pected in a two-dimensional porous configuration. 

CONCLUSIONS 

An analytical approach has been developed for obtaining the heat transfer behavior 
in a two-dimensional porous material .  The method depends on the fact that the surfaces 
of the porous material  at the inlet and outlet of the coolant are each at constant pressure.  
For the type of flow involved, the dimensionless pressure can be regarded as a velocity 
potential, and as a consequence the porous region maps into a simple s t r ip  in the com- 
plex potential plane. The energy equation was transformed into the potential plane, and 
a general solution was obtained. This solution can be applied to any wall geometry by 
finding the appropriate conformal map of the s t r ip  in the potential plane into the physical 
plane. 

specific case of a step porous wall which is made up of two regions, each having a differ- 
ent uniform thickness. 

The analytical technique was applied for various imposed thermal conditions in the 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 9, 1970, 
129-01. 
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